
Molecular dynamics calculations of the thermal expansion properties and melting points of Si

and Ge

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 3489

(http://iopscience.iop.org/0953-8984/18/13/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 09:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/13
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) 3489–3498 doi:10.1088/0953-8984/18/13/016

Molecular dynamics calculations of the thermal
expansion properties and melting points of Si and Ge

V Timon, S Brand, S J Clark and R A Abram

Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK

E-mail: v.t.salinero@durham.ac.uk

Received 5 October 2005, in final form 6 February 2006
Published 17 March 2006
Online at stacks.iop.org/JPhysCM/18/3489

Abstract
The thermal expansion properties and melting points of silicon and germanium
are calculated using molecular dynamics simulations within the density
functional theory framework. An isothermal–isobaric (N PT ) ensemble is
considered in a periodic system with a relatively small number of particles per
unit cell to obtain the thermal expansion data over a range of temperatures, and
it is found that the calculated thermal expansion coefficients and bond lengths
agree well with experimental data. Also, the positions of discontinuities in the
potential energy as a function of temperature are in good agreement with the
experimental melting points.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and method

Si and Ge are both tetrahedrally bonded semiconductors, with Si of particularly great
importance for microelectronic devices and circuits, while SiGe alloys are finding growing uses
in similar applications. The thermal expansion properties of Si and Ge are well known from
experiment [1–3] at low and high temperature but there is also an interest in understanding their
theoretical basis. Knowledge of the thermal expansion coefficients of these materials is very
important for understanding the nature of the stress in device structures [4]. The coefficients
can be theoretically obtained via a phonon mode Gruneisen parameter model [5] or with the use
of a molecular dynamics (MD) simulation. MD is now used as a standard tool with the potential
to accurately predict the thermal expansion and melting points of Si and Ge [6–9]. However,
a common feature of many of these calculations is the employment of unit cells composed of
hundreds of atoms, which leads to high computational cost, and they are therefore restricted
to a limited k = 0 sampling point scheme, tight-binding methods, etc. In addition, until
recently [10] the predicted melting points have been up to several hundred degrees different
from experiment [7].
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In this work a single-phase molecular dynamic simulation of the solid state is made to study
the temperature dependence of the lattice constants for Si and Ge crystals, employing various
cell sizes in order to check the consistency of the results. We have considered both Ge and Si
over a large temperature range spanning the experimental melting points in order to calculate
the thermal expansion coefficients and make some comments concerning the estimation of the
melting point at normal atmospheric constant pressure (1 atm).

The ab initio code employed here is implemented in the CASTEP V 3.0 package [11],
using forces generated by the solution of the Kohn–Sham equations [12] for an extended solid,
and provides structural information about the system. Newton’s equations of motion for the
ions were integrated at a constant time step of 0.002 ps for a single unit cell with Ge or Si atoms
for a total thermalization time of 5000 time steps. Vanderbilt ultrasoft pseudopotentials [13]
describe the electron–ion interactions. The wavefunctions were expanded in a plane-wave
basis set up to an energy cut-off of 400 eV and integrations over the Brillouin zone were
performed using a 2 × 2 × 2 Monkhorst–Pack set sampling point scheme [14]. In the case
of Ge the 3d electrons were treated as valence electrons. A local-density-approximation
(LDA) [15] parametrization is used to calculate the total and potential energies as a function
of cell parameters. Calculations were performed in the range of temperatures from 10 to
∼2000 K. The method employed to define a temperature, T , and further discussion of the finite
temperature approach in this context is described in the works of Nose and Hoover [16, 17].
Partial occupancy of excited states and Gaussian smearing techniques to include contributions
at non-zero temperature are employed.

The potential energy and enthalpy of the system increase with temperature because the
particles sample higher energy configurations and in condensed matter the attractive force
between the atoms or molecules is described by their potential energy relative to the free particle
state. In first-order phase transitions (solid–liquid, vapour–liquid and solid–vapour) there is a
discontinuity in the enthalpy, entropy and volume at a specific temperature while in the case of
second order phase transitions enthalpy, entropy and volume change continuously but there is a
discontinuity in their first derivative with respect to temperature. Hence, a discontinuity in the
potential energy of the system as a function of temperature can indicate the presence of a phase
transition.

2. Results

A series of simulations has been carried out beginning with systems consisting of the bulk solid
phase structure of Si and Ge, with cell parameters and atom positions optimized by means of
total energy calculations. Then, using MD simulations the system was heated to temperatures
below and above the known experimental melting points.

In our calculations, we use supercells of various sizes to check for any significant effects
associated with the finite number of atoms in the supercell. In ab initio calculations it has
been common to use supercells containing up to hundreds of atoms, which appear to lead to
reasonably converged results. However, in this work we perform calculations with smaller
cell sizes of eight and 16 atoms, as well as a 54-atom (rhombohedral) supercell in the case of
germanium. Somewhat unexpectedly, we find rather good results even with a very small cell,
as will be described below.

In particular, we have been interested in the thermal expansion coefficients of the materials.
By definition the coefficient of thermal expansion for length, area or volume is the ratio of the
change in length, area or volume per unit change in temperature. In the case of the linear
thermal expansion coefficient, α, we take this to be given by the expression α = 1

l0
dl
dT , where

l0 is the length at an appropriate reference temperature and l is the T -dependent value [18]. In
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Table 1. Calculated lattice constants, thermal expansion coefficients and potential energy
of silicon.

Lattice Std error in Potential energy Std error in
Temperature (K) constant a (Å) the mean (eV) the mean αa (10−6 K−1)

10 5.396 04 0.000 0283 −1178.4300 0.000 0498
25 5.396 54 0.000 1252 −1178.4100 0.000 1332
55 5.396 79 0.000 1072 −1178.3800 0.000 3111
75 5.398 18 0.000 1669 −1178.3500 0.000 4193
90 5.398 46 0.000 2616 −1178.3400 0.000 5120

100 5.399 31 0.000 2304 −1178.3300 0.000 4566
200 5.401 83 0.000 3819 −1178.2100 0.000 9882 1.6391
400 5.405 66 0.000 4650 −1177.9900 0.001 8680 2.6006
550 5.406 25 0.000 5573 −1177.8200 0.000 2615 3.2684
700 5.408 31 0.000 6430 −1177.6500 0.003 4099 3.8773
800 5.410 04 0.000 6870 −1177.5000 0.004 7063 4.2458

1000 5.413 69 0.000 8753 −1177.2600 0.005 4893 4.8851
1200 5.422 78 0.000 8654 −1177.0400 0.005 5941 5.3875
1510 5.431 96 0.000 6878 −1176.5900 0.009 1796 5.8981
1625 5.433 78 0.001 3199 −1176.4200 0.010 3752 6.0098
1648 5.435 09 0.001 4083 −1176.4000 0.013 2278
1700 5.170 54 0.002 2292 −1175.6900 0.011 5494
1800 5.211 35 0.002 4739 −1175.4300 0.014 4626
1925 5.255 88 0.003 3783 −1175.1800 0.021 9992

our simulations l equates to the Si and Ge lattice constant, a, which we calculate at a series of
values of T .

The average values of the lattice constant a and potential energy obtained from a full
geometric structural relaxation were recorded at every step of the simulation and the calculated
thermal expansion coefficients are shown in tables 1 and 2. In the case of the Ge supercell,
table 2(b), the value of both the supercell lattice constant and the corresponding conventional
cubic unit cell lattice constant are shown. The estimated errors are obtained from the standard
deviation of all the values calculated per time step. With these values the data are fitted to
obtain an analytic function to describe the evolution of the cell parameter with temperature.

At low temperatures a common characteristic of tetrahedrally bonded solid Si and Ge
is the existence of regions with negative thermal expansion coefficients at a temperature of
approximately T/θD = 0.2, where θD is the Debye temperature [3]. This is a problem region
in our calculations due to their sensitivity and associated relatively large errors at low T ; this
affects our ability to make a reliable fit to the results. Thus we have not fitted the data at
temperatures below 100 K when calculating the thermal expansion coefficients. We note that
the existence of negative thermal expansion coefficients also causes problems in, for example,
Grüneisen model predictions of α below about 200 K [19]. Our calculated results (excluding
the problematic region) for the lattice constant as a function of temperature and the associated
fits to the data are shown in figure 1 for Si in the range 100–1648 K, and in figure 2 for Ge in
the range 100–1180 K.

In order to compare our calculated results with those of experiment we show our fitted
curves of lattice parameter as a function of temperature together with the available experimental
results at normal pressure (1 atm) in figures 3 and 4. In figure 3 our fit for Si is compared to the
experimental results of Yim and Paff [20] and figure 4 compares our Ge fit to the experimental
results of Singh [21] over the relevant temperature ranges. We note that the initial differences
between the experimental and calculated values of the lattice constants is typical of the errors
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Table 2. Calculated lattice constants, thermal expansion coefficients and potential energy of
germanium.

(a) Ge eight-atom cubic unit cell

Lattice Std error in Potential energy Std error
Temperature (K) constant a (Å) the mean (eV) in the mean αa (10−6 K−1)

10 5.618 110 0.000 207 −2165.67 7.93E−005
25 5.618 710 0.000 237 −2165.65 0.000 219
55 5.619 620 0.000 181 −2165.62 0.000 369

100 5.621 490 0.000 278 −2165.57 0.000 718
200 5.622 300 0.000 386 −2165.44 0.001 818 1.9281
300 5.626 620 0.000 504 −2165.32 0.002 274 6.7034
500 5.631 130 0.000 523 −2165.06 0.003 451 9.3027
550 5.636 260 0.000 486 −2165.05 0.003 492 9.5211
700 5.647 620 0.000 743 −2164.86 0.004 149 9.8808
800 5.650 810 0.000 972 −2164.74 0.003 769 9.9993
925 5.658 680 0.000 860 −2164.61 0.004 190 10.0087

1000 5.664 480 0.000 906 −2164.49 0.004 541 10.1213
1180 5.670 630 0.001 131 −2164.26 0.006 191
1220 5.549 000 0.002 315 −2164.11 0.007 125
1300 5.552 369 0.002 563 −2164.00 0.007 852
1400 5.608 900 0.002 537 −2163.90 0.007 956
1600 5.563 770 0.003 120 −2163.70 0.008 125

(b) Ge 16-atom supercell

Supercell Cubic unit
lattice cell lattice Std error in Potential energy Std error in

Temperature (K) constant (Å) constant a (Å) the mean (eV) the mean αa (10−6 K−1)

25 7.936 850 5.6122 0.000 067 −4333.44 0.000 221
50 7.936 840 5.6122 0.000 131 −4333.38 0.000 481

100 7.936 480 5.6119 0.000 221 −4333.31 0.000 892
200 7.937 930 5.6130 0.000 351 −4333.03 0.002 325 6.9973
250 7.944 880 5.6178 0.000 451 −4332.93 0.002 129 7.2646
400 7.948 680 5.6206 0.000 479 −4332.78 0.002 425 7.4384
500 7.958 951 5.6278 0.000 611 −4332.38 0.003 303 7.4602
700 7.971 510 5.6367 0.000 767 −4331.89 0.005 196 7.4729
900 7.979 480 5.6424 0.000 852 −4331.35 0.006 230 7.4763

1000 7.987 880 5.6483 0.000 879 −4331.08 0.007 962 7.4771
1125 7.990 100 5.6500 0.000 932 −4331.01 0.008 254 7.4777
1180 7.996 930 5.6554 0.000 990 −4330.75 0.009 044
1220 7.787 350 5.5053 0.001 595 −4327.13 0.011 550
1300 7.782 320 5.5053 0.001 630 −4326.75 0.011 567
1400 7.784 220 5.5043 0.001 802 −4326.59 0.011 905
1500 7.820 800 5.5301 0.001 752 −4326.27 0.013 807

encountered in first principles calculations using DFT. In the case of silicon, a calculation
involving only an eight-atom supercell is sufficient to give good agreement with experiment
when comparing the change in lattice constant with temperature. In the case of Ge, with the
additional 3d electrons included as valence electrons, we have performed calculations with
eight- and 16-atom supercells, and to a more limited extent with a 54-atom supercell. In
figure 4 the slope of the curve for the 16-atom Ge results differs by only about 1% from
the experimental value, a significant improvement on the eight-atom results. We note that a
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Figure 1. Values calculated from the numerical simulations (data points) and fitted curve for the
lattice constant a, as a function of temperature for Si.

Figure 2. Values calculated from the numerical simulations (data points) and fitted curves for the
lattice constant a, as a function of temperature for Ge.

linear extrapolation of the eight- and 16-atom data to T = 0 K leads to a consistent value for
the zero-temperature lattice constant. To investigate the convergence properties further in the
Ge case, more computationally expensive calculations with a 54-atom supercell were carried
out for several sample temperatures. These calculations gave lattice constant values of 5.616,
5.629 and 5.645 Å at temperatures of 100, 500 and 1000 K respectively. There is again a small
systematic shift in the overall results but these values differ only slightly from those for the
16-atom unit cell despite the significantly increased computational expense and this justifies
the use of the smaller, 16-atom, supercell in the case of Ge. This difference in the minimum
size system between Si and Ge may be due to the ion mobility difference observed for Si and
Ge [22]. It is also possible that the inclusion of the d electrons could have some influence, and
consequently the larger cell size required in the case of Ge may be indicative of that required
for materials such as GaAs and GaN, for example. In summary, these results give us a good
indication of the reliability of the calculations and confidence in the calculated values of α using
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Figure 3. Calculated and experimental values of the Si lattice parameter as a function of
temperature.

Figure 4. Calculated and experimental values of the Ge lattice parameter as a function of
temperature.

an eight-atom unit cell in the case of silicon, and a 16-atom unit cell in the case of germanium.
Use of a bigger unit cell does not significantly improve the agreement with experiment, and in
particular the value of the thermal expansion coefficient, α.

With the analytic fits to the results we were able to obtain calculated values for the thermal
expansion coefficients. These functions were then used (with a0 being the value of a at
100 K) to obtain the thermal expansion coefficients between 100 K and temperatures close
to the melting points as listed in the last column in tables 1 and 2. Figures 5 and 6 show
the comparison between the thermal expansion coefficients calculated from first principles
and those measured by experiment [18]. According to figures 5 and 6 the calculations for
Si and Ge give results which are consistent with the experimental data. In the case of Ge the
results are somewhat improved with the use of the 16-atom supercell as compared to the eight-
atom supercell. In each case we can see that the calculated data reproduces the same type of
behaviour as seen in experiment. For both Si and Ge the increase in the thermal expansion
coefficient tends to level off with increased temperature, consistent with experiment.
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Figure 5. Comparison of the calculated and experimental linear thermal expansion coefficients of
Si versus temperature.

Figure 6. Comparison of the calculated and experimental linear thermal expansion coefficients of
Ge versus temperature.

An interesting observation concerning this work relates to the identification of a first order
phase transition in Si and Ge. Previous detailed studies reported by Sugino and Car [7] and Alfe
and Gillan [10] have modelled the phase transformation of Si from first principles employing
large unit cells consisting of up to 250 atoms. In our calculations, employing a much smaller
number of atoms, we note that in the plots of lattice constant versus temperature there is a
discontinuity at elevated temperatures. Although the size of the discontinuity has not been
demonstrated to converge in our calculations, its position is relatively independent of the size
of the system and appears to coincide with the experimental melting point to within a few
degrees. This is demonstrated in figures 7 (Si) and 8 (Ge) where the calculated value of
the potential energy is plotted against temperature. It can be seen that this function has two
apparent linear regions together with a clear discontinuity between them. The positions of
these two discontinuities correlates well with the experimental values of the melting points of
Si and Ge respectively. In Si, the discontinuity occurs at 1674 ± 26 K in good agreement with
the experimental melting point Tm = 1685 K [10], whereas for Ge it occurs at 1200 ± 20 K,
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Figure 7. Calculated potential energy as a function of the temperature for Si.

Table 3. Volume and fractional change in volume calculated at the discontinuity in potential energy
for Si and Ge.

Element State Temperature Volume (Å
3
) �V/Vs (calc.) �V/Vs (exp.)

Si Solid 1648 160.65 ± 0.125 473
Si Phase change 1700 138.42 ± 0.177 409

∼13.8% 11.9% a

Ge (unit cell) Solid 1180 182.45 ± 0.105 826
Ge (unit cell) Phase change 1220 171.03 ± 0.141 716
Eight-atom cell ∼6.2% 5% b

Ge (primitive supercell) Solid 1180 360.354 ± 0.134 17
Ge (primitive supercell) Phase change 1220 334.107 ± 0.208 35
16-atom supercell ∼7.0% 5% b

a Reference [7].
b Reference [21].

in good agreement with the experimental value of Ge, Tm = 1210 K [23]. This discontinuity
in the case of Ge is even more distinct with the use of the 16-atom supercell, but there is no
significant change in the position of the discontinuity compared to the eight-atom results.

Other evidence for a structural change relates to anomalies in the cell parameters above
the discontinuity as shown in tables 1 and 2. It is known that silicon and germanium liquids
are denser than the corresponding solid, in common with a number of elements [24], and also
the most familiar example, water. In accord with this phenomenon, both materials show a
contraction in volume upon melting quantified by the ratio �V/Vs, where �V is the decrease
in volume of the solid phase with respect to the liquid and Vs is the volume of the material in the
solid phase at the transition. The theoretical volume discontinuity from our results is compared
with the experimental results for Ge and Si in table 3. The calculated values agree well with the
experimental results given in [7, 23] and overall show the same kind of behaviour as is found
for Ge and Si at normal pressure [25].

3. Conclusions

In general, we find that our calculated values of the lattice constants and thermal expansion
coefficients of silicon and germanium as a function of temperature are in good agreement with
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(a)

(a)

Figure 8. Calculated potential energy as a function of temperature for Ge. (a) Ge eight-atom cubic
unit cell; (b) Ge 16-atom supercell.

experiment, even though we have employed rather small supercells in the simulation. The
calculations also appear to give a good indication of the value of the melting points of the two
materials. The use of a small unit cell does, however, involve a trade-off. There are other
thermodynamic quantities, such as the latent heat, which cannot be convergently calculated.

Our results suggest that the molecular dynamics simulations based on DFT and LDA and
the N PT ensemble is a useful methodology to simulate Si and Ge and by implication other
semiconductors also at constant temperature and pressure without the necessity to employ a
system involving perhaps some hundreds of atoms.
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